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Finite Size Effects on Textured Surfaces: Recovering Contact Angles

from Vagarious Drop Edges
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ABSTRACT: A clue to understand wetting hysteresis on
superhydrophobic surfaces is the relation between receding
contact angle and surface textures. When the surface textures
are large, there is a significant distribution of local contact
angles around the drop. As seen from the cross section, the
apparent contact angle oscillates as the triple line recedes. Our
experiments demonstrate that the origin of these oscillations is
a finite size effect. Combining side and bottom views of the
drop, we take into account the 3D conformation of the surface
near the edge to evaluate an intrinsic contact angle from the
oscillations of the apparent contact angle. We find that for
drops receding on axisymmetric textures the intrinsic receding
contact angle is the minimum value of the oscillation while for
a square lattice it is the maximum.

B INTRODUCTION

Surface roughness and textures are known to dramatically
modify the wetting properties of a solid, especially enhancing
superhydrophobicity. For a small liquid droplet lying on a
textured surface, the Cassie' and Wenzel”> models generalize the
classical Young theory based on the global equilibrium of the
triple line.> However, the limits of equilibrium models have
been pointed out repeatedly.* Beyond thermodynamic
equilibrium, a key point has emerged in the past 10 years:
the presence of metastable states and pinning, which has put
emphasis on the role of the local conformation of the triple
line.’ Some recent developments have tried to take into
account this local conformation to improve the classical
thermodynamic theories® ® while others have proposed
pinning theories where the interplay between surface
heterogeneities and the deformability of the triple line is
considered explicitly.”~"?

In parallel to this controversy, the presence of heterogeneities
all along the triple line has significant experimental con-
sequences. Indeed, it is well-known that surface textures induce
a distribution of local contact angles along the perimeter of the
drop. On many superhydrophobic surfaces, the texture size is in
the 10 pm range: with such large textures the distribution of
local angles spreads over several degrees. During a contact
angle measurement the measured contact angle is found to vary
somewhat jerkily as the triple line recedes because of the local
contact angle distribution around the drop. In fact, what is
reported is an oscillatory evolution of the contact angle with
time.">'> The question that arises is, which one is the
physically meaningful receding contact angle: the minimum
value, the maximum, or the average?

In a detailed investi%ation of receding triple lines on textured
surfaces, McHale et al.'®> measured the contact angle oscillations
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quantitatively. They ascribed the oscillations to a “step-like
retreat” induced by the finite size of the texture. They analyzed
the oscillations with an axisymmetric pinning model'® and were
able to reasonably account for the amplitude of the oscillations.
However, they did not provide insight into which value of the
measured contact angle is physically meaningful.

In this paper we report on an in-depth investigation of these
oscillations of the contact angle. We have studied the time
evolution of the receding contact angle on superhydrophobic
surfaces textured with distributions of posts. Two types of
surfaces were compared: a regular surface with periodic texture
and a more unusual surface with axisymmetric features. Also,
for a better understanding of the relation between triple line
morphology and receding contact angle, we have introduced a
primitive 3D visualization of the drop shape. With this
additional input on the local conformation of the triple line,
we can compare the origins of the oscillations on the
axisymmetric and periodic surfaces, which are quite different.
We show that in each case a meaningful value of the
macroscopic contact angle can be recovered from the seemingly
erratic evolution of the measured contact angle.

B MATERIALS AND METHODS

Following the method previously described in refs 11 and 12,
hydrophobic surfaces are obtained by spin-coating a hybrid silica layer
on a glass surface with a sol—gel process. The texture is imprinted
using an elastomeric mold, and hydrophobicity is enhanced by
silanization.
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Figure 1. Textures and geometrical parameters for: (a) an axisymmetric surface (dartboard) with radial period 4, = 60 ym and tangential period A4 =
30 um; (b) a periodic surface (checkerboard) with period A = 30 um. For both surfaces the pillar diameter is d = 10 #m, and the scale bar is 60 ym.

The textures are obtained with cylindrical 10 ym diameter posts
arranged in two different patterns. The first pattern (Figure la)
consists of concentric circles, in the manner of a dartboard. It is
axisymmetric, and the distance between two circles (radial period) is A,
= 60 um. The distance between two adjacent posts (tangential period)
is A9 = 30 um. The second pattern consists of a square lattice (Figure
1b), in the manner of a checkerboard. It is translationally invariant,
with a period 4 = 30 ym.

The liquid used in all the experiments is water. The typical initial
drop volume is about 5 uL, and evaporation takes place at normal
conditions (atmospheric pressure and room temperature). We do not
control the temperature or humidity, as we focus our attention on the
kinematics of the triple line and not on the evaporation kinetics.

We monitor the evaporation of the droplet from two different
directions simultaneously. From the side view (Figure 2, top) the
contact angle 6, contact radius r, and drop height h are measured. For
periodic surfaces, the side views are taken along the row directions.
Thanks to the transparency of the substrate, we can also monitor the

side
view
—
. front,
1 “ position
bottom ! front
view b

Figure 2. Experimental arrangement: the side view and the bottom
view are recorded simultaneously. From the side view, contact angle,
drop radius and height can be measured. From the bottom view, the
conformation of the triple line on the surface textures is evaluated. In
the present instance, the surface texture is a square array. At the edge
of the drop, the triple line is seen to sit on the outermost row, which
defines the front position. The front width is defined by the number of
posts wetted by the triple line on this row.

contact area: from the bottom view (Figure 2 bottom) the
conformation of the triple line is assessed. In practice, the droplet
actually sits upside down for easy observation of the bottom view with
an ordinary microscope. The droplet is first deposited on an ultralow
adhesion surface and then transferred to the surface of interest where it
remains suspended during evaporation.

B RESULTS

Our observations of drop shapes during evaporation are
summarized in spatiotemporal plots (Figures 3 and 6)
displaying the evolution of the drop base (horizontal cross
section, top plot) and drop height (vertical cross section,
bottom plot). These plots are obtained using the “orthogonal
views” command in the Image] software. The spatiotemporal
plots reveal the overall shrinkage of the drop before the drop
transits to fully wetting in the Wenzel state.
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Figure 3. Spatiotemporal plot of drop morphology as a function of
time: (top) horizontal cross section through the base of the drop and
(bottom) vertical cross sections on a dartboard surface. Contact radius
jumps on both sides of the cross section and height jumps (denoted
I-1IV) all occur simultaneously.
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On the axisymmetric surface the drop first self-centers (not
shown) until the edge sits exactly on a circle of pillars. This
transient phase lasts for a variable amount of time, depending
on the marksmanship of the operator. Once the drop has
centered, we observe a series of jumps affecting the drop rim
(labeled I to IV in Figure 3, top), separated by phases where the
base radius stays constant. Quite surprisingly, observation of
the drop profile shows that the jump of the rim leads to a
concomitant jump of the drop height (Figure 3, bottom).

We also plot the time evolution of the contact angle and the
position of the edge of the drop in Figure 4. The receding
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Figure 4. Contact angle (top) and drop edge position (bottom) as a
function of time for an axisymmetric (dartboard) surface. Also shown
in the top panel is the prediction for the contact angle based on
measured contact radius and drop height (eq 4).

contact angle increases suddenly with each contact radius jump.
Between jumps the contact angle and drop height both
decrease gently. The overall picture, confirmed by the bottom
views (not shown), is that of a series of jumps affecting the
whole drop edge simultaneously (Figure Sa). Since this sudden
retraction of the triple line by a distance equal to the radial
period of the texture (Figure 4, bottom) occurs at constant
volume, it is accommodated by a sudden increase of both
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Figure S. (a) Drop edge kinematics for axisymmetric surfaces. When
the drop recedes, the triple line stays pinned on a circle of pillars.
When the jump occurs, it involves the triple line as a whole. (b) Drop
edge kinematics for periodic surfaces. When the drop recedes, the
protrusion shrinks through the motion of two opposite kinks. When
the protrusion is too narrow, it jumps on the inner row of pillars.

height (Figure 3, bottom) and contact angle (Figure 4, top).
Between jumps, a smooth decrease is observed as the drop
shrinks gradually at constant contact radius.

For the periodic surface, we also find a stepwise evolution of
the contact radius (Figure 6). However, we find that the jumps
on opposite sides of the rim (labeled ITa—IVa on one side and
Ib—Vb on the other side) are clearly not synchronized. Our
data also evidence the usual continuous decrease of the drop
height (Figure 6, bottom), without any sign of height jump.

These results point to quite a different mechanism. For the
axisymmetric texture, the drop can naturally sit on a circle of
pillars. For the periodic texture, the triple line conformation is
more elaborate: because of geometrical incompatibility between
the axisymmetric drop and the periodic texture, the triple line
must deform in locations where it bends out of a given row of
pillars into the next (Figure 2, bottom). This deformatlon isa
defect which we have previously called a kink."”> The edge of
the drop can then be seen as a protrusion delimited by two
opposite kinks. The local geometry (Figure Sb) can be defined
by the position of the protrusion (the row on which the
protrusion sits) and the width of the protrusion (the distance
between the two opposite kinks). This distance is best
measured as a number of pillars N, equivalent to a length / =
NA.

Plotting the time evolution of the contact angle and the front
position (Figure 7, top and middle), we find that they are quite
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Figure 6. Same spatiotemporal plot of drop morphology as a function
of time for a checkerboard surface. As in the previous case, position
jumps also affect the edge. They are denoted I-IVa on one side of the
cross section and I=Vb on the other side. There is no time correlation
between jumps across the drop. The drop height decreases smoothly,
without any measurable jump.

similar to the evolution observed in the axisymmetric case.
However, when we plot the front width (Figure 7, bottom) as
recorded from the bottom view, we find that the decrease of the
contact angle is related to the decrease of the front width. More
precisely, as the protrusion becomes narrower the contact angle
decreases. This evolution takes place until the narrow
protrusion suddenly jumps and settles as a significantly wider
protrusion on the next row, thus changing position by one row

inward (Figure Sb).
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Figure 7. Contact angle (top), drop edge position (middle), and front
width (bottom) as a function of time for a periodic (checkerboard)
surface. Also shown in the top panel is the prediction for the contact
angle based on measured front width (eq S).

Despite clear similarities in the time evolution of contact
angle and jumps, it appears that the axisymmetric and the
periodic surfaces differ significantly. For an axisymmetric
surface liquid redistribution during the jump involves the full
drop, as evidenced by correlation across the drop and height
jump. For a periodic surface, this is a much more local affair
which involves a protrusion which typically extends over a few
pillars.

B DISCUSSION

We now develop a quantitative analysis of the data.

Consider first the axisymmetric case. In the spherical cap
model, the drop volume as a function of contact radius r and
contact angle 6 is

7z_r3 (1 = cos 0)*(2 + cos 6)
3 sin® @ (1)

When the triple line is pinned (constant r), a progressive
reduction of drop volume through evaporation leads to a
decrease of the contact angle. Following McHale et al,"* we
consider a sudden (small) jump of the radius from r — r — &r.
Since this change is rapid, it occurs at constant volume. From
eq 1 the contact angle variation is

V =

or

00 = sin 6(2 + cos 0)—

(2t cosO) @

which was found to provide a reasonable evaluation of the
contact angle jumps.'

To analyze the height jumps, we carry out identical
calculations substituting the drop height h for the contact
angle 0. A (small) change in the radius r — r — 6r leads to a
(small) change in the height h — h + Sh with

2rh
oh = ——or
P+ K ©)
For an axisymmetric drop, oh is expected to be of the same
order of magnitude as dr. Predictions given by eqs 2 and 3 are
in good agreement with the experimental observations, with
predicted values 60 = 6.7° and 6h = 40 um. We can also test the

These observations make sense since the jumps are local and
do not involve liquid redistribution at the drop scale as for
axisymmetric surfaces. We therefore propose a different model
for contact angle jumps.

Focusing on the local conformatlon of the triple line, we
follow Joanny and de Gennes:'” for an in-plane perturbation of
the triple line of width /, the perturbation of the liquid surface
decreases exponentially with a decay length of the order of /
along the out-of-plane direction (Figure 8). In our problem, the

narrow pert.
(small N)

wider pert.
(larger N)

Figure 8. Schematic of the drop edge deformation: local contact angle
resulting from an in-plane perturbation of the triple line (width / =
NJ) approximated from a simple geometrical construction. Inset: as a
result of equilibrium of the drop surface, an in-plane perturbation of
the triple line (width 7) decays in the perpendicular direction (ie.,
along the surface of the drop) over a characteristic distance equal to /.

protrusions of the front are observed in the bottom view
(Figures 2 and Sb). The width of the protrusion is / = NA, and
this distance sets the out-of-plane extent of the perturbation
(Figure 8), according to the Joanny and de Gennes theory."”
Owing to this protrusion of finite size, the contact angle
measured near the surface differs from the contact angle 6,
measured away from the surface. The difference 60 can be
easily calculated by projection (Figure 8). We find that 56 = 6,
— 0 ~ 1 sin 0,/(NA), so that the relation between 8, 8,, and N
is

sin 6,

o=%" 7y s
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We have observed that the contact angle @ decreases when the
width of the perturbation decreases. This trend is fully
consistent with the geometrical argument we propose, as
shown in Figure 8 and evidenced by eq S. With this equation,
we can use the measured values of N to calculate the contact
angle oscillations with only one free parameter 6. Results for 8,
= 134° are displayed in Figure 7 and show good agreement
with the measured contact angle values. We conclude that this
simple approach adequately reproduces the oscillations of the
contact angle, even if it does not take into account the finer
details of the conformation of the pinned triple line, such as the
exact position of the line on the pillars or the shape of the pillar.
When N — oo, the spatial extent of the protrusion diverges and
the correction to the contact angle drops to zero. In this case
the measured receding contact angle converges to 6, which
stands out as an intrinsic contact angle, unaffected by finite size
effects. This angle 6, determines the threshold tension which
has to be applied to the triple line in order to just obtain
depinning, for an infinitely large drop. In principle, 6, could be
measured far away from the surface, where all the finite size
perturbations due to surface textures have decayed to zero.
However, we have to keep the drop size smaller than the
capillary length, that is to say, in the ~1 mm range or smaller,
while the typical triple line perturbations extend over a few
lattice parameters, in the ~100 pm range. As a result, the
natural curvature of the drop makes it nearly impossible to
measure the intrinsic contact angle 6, far enough from the
surface. In short, it is to be expected that the contact angle
measurement is quite generally affected by finite size effects for
textures in the range of 10 ym or more, and it turns out difficult
to evaluate the intrinsic contact angle 6j: extrapolating as a
function of perturbation size as we have done here is a viable
way to reach that goal. In contrast, for an axisymmetric surface
the size of the perturbation is actually the drop size. Once the
depinning threshold is reached, the contact radius, the contact
angle and the drop height all jump simultaneously, as accurately
rendered by the axisymmetric model.

Once the oscillations have been measured, how do we
determine the receding contact angle? Let us first consider the
axisymmetric texture. The measured contact angle is at a
minimum just before the jump. At this point the tension on the
triple line is maximum, and the triple line depins as a whole.
This depinning threshold depends upon pillar geometry and
tangential period A, in a manner discussed before.”'* Since the
triple line sits perfectly on the circle of pillars, without any kink,
the radial period A, does not affect the depinning threshold:
how much the line will have to jump after it has depinned is of
course irrelevant to the threshold itself! Just after the jump,
however, there is a sudden excess volume, and the contact angle
is now at a maximum. It has increased by a value given by eq 2.
Since 6r = A, the contact angle just after the jump primarily
depends upon the radial period. Clearly in this case the intrinsic
contact angle is the depinning contact angle, i.e., the minimum
value, while the maximum contact angle, which depends upon
parameters to which pinning is indifferent, has no intrinsic
character. The general picture which emerges is that the jump
leaves the system with some surplus volume: subsequent
evaporation will gradually bring the contact angle down to the
intrinsic depinning threshold whereupon the next jump occurs.
Let us now turn to the periodic surface; it would be tempting to
assume that the same occurs in this case. However, the present
results suggest that when a drop sits on a periodic texture, the
resulting protrusion on the edge interferes with contact angle in

the opposite manner. The effect of the protrusion is to reduce
the contact angle by an amount which is inversely proportional
to the protrusion width, so that for a periodic surface we expect
that it is the maximum contact angle which is closest to the
intrinsic contact angle.

B CONCLUSIONS

In this paper we have considered the evaporation of liquid
droplets on textured surfaces. In particular, we have monitored
the evolution of the contact radius, drop height, and contact
angle on both an axisymmetric surface and a periodic surface.

For the axisymmetric surface, the triple line is pinned on a
row of posts and the contact angle decreases as the drop
evaporates. At the threshold angle, depinning occurs, affecting
the full contact line simultaneously. We have shown that the
axisymmetric model'*'® accurately captures this kinematics
with simultaneous jumps of the contact radius, drop height, and
contact angle upon depinning. In this case the intrinsic receding
contact angle is the minimum contact angle, for which the
tension applied to the triple line is maximum.

For a periodic texture, local distortions of the triple line form
protrusions which extend in the out-of-plane direction up to a
distance of the order of the in-plane width. When the receding
contact angle is measured during evaporation, the recorded
oscillations are due to the periodic evolution of these
protrusions as they adjust while the triple line recedes.

Here we have shown that by taking into account the full 3D
shape of the drop, even in a rather coarse way, the spatial extent
of the perturbation can be assessed and the contact angle value
can be corrected for finite size effects to evaluate the intrinsic
contact angle. Our results demonstrate that in this case it is the
maximum value which lies closest to the intrinsic receding
contact angle.

This contrasted behavior provides another demonstration of
the central role played by the local configurations of the triple
line and associated metastable states in wetting problems. It
also highlights the necessity to think in three dimensions, since
it is from the conformation of the liquid surface around the
drop edge that we can make sense of the in-plane configuration
of the triple line itself.
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