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Abstract

A new pressure sensor array, positioned on the bottom plate of a standard torsional rheometer, is presented. It is built from a unique piezo-capac-
itive polymeric foam and consists of 25 capacitive pressure sensors (of surface 4:5� 4:5mm2 each) built together in a 5� 5 regular array. The
sensor array is used to obtain a mapping of the normal stresses in complex fluids, which dramatically extends the capability of the rheometer.
We demonstrate this with three examples. First, a pressure profile is reconstructed in a polymer solution, which enables the simultaneous mea-
surement of the first and the second normal stress differences N1 and N2, with a precision of 2 Pa. In a second part, we show that negative pres-
sures can also be measured. Finally, we focus on the normal stress fluctuations that extend both spatially and temporally in a shear-thickening
suspension of cornstarch particles. We evidence the presence of a unique heterogeneity rotating very regularly. In addition to their low cost and
high versatility, the sensors show here their potential to finely characterize the normal stresses in viscosimetric flows. © 2021 The Society of
Rheology. https://doi.org/10.1122/8.0000249

I. INTRODUCTION

Contrary to Newtonian fluids that are fully characterized
by their viscosity η only, complex fluids exhibit a much
more diverse behavior. Their microstructure, at an intermedi-
ate length scale between the molecule and the sample size
(the radius of gyration of polymer coils in polymer solutions
or the size of solid particles in suspensions), is altered by the
flow. This often induces a nonlinear relation between the
applied stress σ and the resulting flow velocity: its under-
standing is a fundamental challenge, central in many indus-
trial processes. A striking example is the presence of normal
stresses, appearing in the diagonal components of the stress
tensor. In polymer melts and solutions, the normal stresses
are responsible for a number of spectacular effects, such as
the swelling of fluid in extrusion processes or its climbing on
rotating rods [1], and have been the object of numerous
studies [2–7]. Normal stresses are much less documented in
other systems, even if they are essential to fully characterize
the flow of complex materials. Yield-stress fluids, for
example, develop moderate normal stresses in shear whose
sign (positive or negative) and origin are still actively dis-
cussed [8–10]. In suspensions of solid particles, the sign of
normal stresses is also the object of debate [11–16]. They are
causing, in particular, particle migration [17] or edge fracture
[18,19]. The normal stresses also increase dramatically in
dense shear thickening suspensions: very high normal
stresses, up to 10 000 Pa have been reported [20,21]. They
are often associated with an inhomogeneous flow and gener-
ate localized forces strong enough to damage the rotors of
mixing systems [21].

In viscosimetric flows, normal stresses are far less studied
than shear stresses, mostly because their measurement is not
straightforward. Indeed, on a torsional rheometer, the normal
stress differences N1 and N2 are usually measured by com-
bining two experiments with different geometries: the net
thrust force gives access to N1 in a cone/plate geometry and
to N1 � N2 in parallel plate geometry [1,10,13,22,23]. N2 is
then calculated by finding the often small difference between
two large experimental quantities, which amplifies the
impact of any measurement error [7]. Other techniques have
been developed to obtain a more reliable measurement of N2

[3,13] or to avoid using cone plate geometry (unsuitable in
some systems such as suspensions of large particles): the
rotating rod rheometry [11,17,24,25], the measurement of the
shape of a free surface [3], or the tilted through method
[12,26]. Another method consists of measuring the pressure
distribution as a function of radial position r in cone/plate or
plate/plate geometry, by using a small number of pressure
sensors integrated to the plate of a torsional rheometer. This
technique, which gives both N1 and N2 in a single experi-
ment, has been attempted in polymer solutions [2,4,7,27] and
recently in a non-Brownian suspension [14]. Unfortunately,
such setups are complex to build and measurements can be
flawed. For example, Couturier et al. [12] used a rectangular
channel that causes unwanted secondary flows near the
corners of the cross section. The use of sensors must also
meet a number of important requirements, for example, being
small enough relatively to the rheometer plate, be extremely
sensitive, and not cause any disturbance to the flow [28].
The pressure transducer membranes have to be positioned at
exactly the same level as the disk surface: if not, a hole pres-
sure has to be accounted for [29,30] and may lead to error
measurements, as in the pioneering work of Adams and
Lodge [2]. To this purpose, Dbouk and co-workers [14]
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coated the surface transducers with paraffin, so that no pres-
sure hole effect is expected to take place. In addition, the
number of sensors is often limited by the size of the plate
and by the volume of the acquisition system.

Here, we demonstrate the potential of a new low-pressure
sensor array in the measurement of normal stresses in
non-Newtonian fluids, with a spatial resolution of
4:5� 4:5mm2. The number of sensors (25 in a 4� 4 cm2

surface), their precision (up to 2 Pa for pressures below
1000 Pa), and the frequency of measurements (200 Hz) are
unprecedented. In addition, the sensor array is highly versa-
tile: the position, the size, and the number of sensors are
easily varied by changing the bottom electrode only. They
also do not drift with time and involve no pressure hole as
the contact surface is flat and made of one piece. After pre-
senting the sensor fabrication method and acquisition system,
we demonstrate its potential to characterize three different
flows in parallel plate geometry. First, in a polymer solution,
we measure simultaneously the two normal stresses N1 and
N2, both in very concentrated and in very diluted systems.
We then focus on a Newtonian fluid subjected to a secondary
flow and measure this time negative pressures. Finally, we
consider a shear-thickening fluid that exhibits flow heteroge-
neities: our sensors evidence the presence of a single aggre-
gate rotating very regularly, an intriguing phenomenon that
cannot be detected through the force sensor of the rheometer.

II. THE SENSOR ARRAY: FABRICATION,
CALIBRATION, AND PROPERTIES

A. Sensor array

A distinctive feature of the pressure sensor array presented
here is that the 25 sensors are not designed individually. As
shown in Fig. 1(a), the sensor is made of two surfaces: a

solid electrode network (left) and a soft measurement surface
(right) made of a polymeric material. As shown in Fig. 1(b),
the electrode network is placed on the bottom plate of a tor-
sional rheometer (Discovery HR-2, TA instruments) and
covered by the measurement surface. A thin grid of double-
sided tape is added between the two surfaces. The three-layer
sandwich thus formed is the pressure sensor array itself, with
a total thickness of �3mm. It is presented in sectional view
in Fig. 1(c).

The bottom layer is shown in dark blue and gray. It is
a simple electrode network, custom-made by JLC PCB.
The electrodes are 25 conductive square surfaces of
4:5� 4:5mm2, organized in a 5 � 5 regular matrix, and con-
nected individually to the acquisition system. The total
surface of the network is 4� 4 cm2, which corresponds to
the typical size of rheometer plate geometry.

On the top of the electrode network is attached a 25 μm
thick layer of double-sided tape, as shown in Fig. 1(c). Using
a laser cutter, 25 square holes (with size 5� 5mm2) are cut
into the tape so that it does not cover the electrodes. The role
of this intermediate layer is double: first, it ensures a good
adhesion of the bottom layer to the measurement surface. In
addition, its presence increases the sensitivity of the sensor
by a factor 10 at very low pressures (,150 Pa). We interpret
this as the consequence of a bending of the soft measurement
surface within the grid (by typically 10–20 μm), which can
only happen when the measurement surface is slightly raised
above the bottom electrodes.

The last layer is the measurement surface itself. Its core is
a piezo-capacitive soft solid foam [shown in black in
Fig. 1(c)] made from a polydimethylsiloxane polymer
(PDMS) filled with 10% in weight of carbon black particle.
This material was developed previously in our team, and its
fabrication method is presented in detail in [31,32]. Here, the

FIG. 1. (a) Picture of the electrode network (left) and the measurement surface (right) of a sensor array. (b) Experimental system: both layers are placed on the
top of each other on the bottom plate of a parallel plate rheometer. The upper disk has a radius R of 2 cm, and the gap thickness h is 1 mm. (c) Side-cut of a
capacitive sensor array. (d) Typical calibration curve of one sensor for applied pressures P . 0, showing the capacitance C as a function of hydrostatic pressure
P. (e) Capacitance of three sensors when subjected to varying shear stress σ. One is positioned at the center of the geometry (r = 0) and the other two are
placed diagonally at a distance r = 12 mm to the center.
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solid foam is fully integrated into a multilayered sandwich to
make a solid and reliable sensor. The foam itself is prepared
as described in [32] through a water-in-oil emulsion process:
a mixture of water and carbon-black particles is slowly added
to PDMS under vigorous mixing. The emulsion then forms a
paste, that is uniformly spread in a 1 mm thick sheet using an
applicator (Zehntner ZUA 2000). The spreading is done on a
Mylar surface covered by a 5 μm thick insulating layer of
plain PDMS [shown in yellow in Fig. 2(c)], previously
deposited with a spin-coater and cured for 1 h at 70 �C. After
spreading, the paste is cured in a two-step process. First, it is
placed in a bath of de-ionized water at 70 �C for 6 h to ensure
cross-linking of the PDMS polymer. After curing, the solid
is let to dry at 70 �C for 24 h so that all water contained in
the pores evaporates. After curing and drying, the emulsion
turns into a piezocapacitive soft solid foam. Its relative soft-
ness (with a Young modulus of 1.6MPa [31]) is at the
source of its remarkable piezocapacitive properties: when a
pressure is applied on the material, the micropores (of size
between 1 and 10 μm) deform, which induce a large variation
of its permittivity and thus its capacitance. In the sensor
array, the upper part of the foam is covered by a 25 μm thick
paste of silver particles (Creative Materials), shown in gray in
Fig. 1(c), which plays the role of a soft electrode. The upper
electrode is connected to the acquisition system by planting a
conductive screw attached to a wire through the silver film
[as in Fig. 1(a)]. Finally, a protective coating of PDMS is
cast around the three layers of the measurement surface. The
PDMS, initially liquid, is let to rest for 30 min at ambient
temperature to ensure that the measurement surface is flat. It
is then cured at 70 �C for 1 h. We thus obtain a good
alignment of the sensor with upper plate geometry. Small
fluctuations of thickness (of the order of 20 μm) are observed
when determining the zero position of the upper plate. These
perturbations are small compared with the gap size in our
experiments (1 mm) and the radius of the geometry (2 cm),
and they are considered as standard in rheology.

The Young modulus of the whole measurement surface is
close to the modulus of the piezocapacitive foam alone
(≃1:6MPa [31]). At small pressures (of the order of 100 Pa),
the main source of deformation of the sensor originates in its
local bending in the grid of a double-sided tape. The level
difference between the disk and the coated sensor is thus less
than 25 μm, while the gap between the disks is set to 1 mm.
In such conditions, no pressure hole effect is expected. To
check whether the softness of the sensor and the small thick-
ness variations of the measurement surface might impact the
flow, we compare in supplementary material, Fig. 1 [33] the
flow curves of the two non-Newtonian fluids studied here (a
polymer solution and a cornstarch suspension) when mea-
sured directly on the (solid) rheometer plate or on the soft
sensor array. In both cases, the flow curves are almost identi-
cal, which indicates that the presence of sensor does not sig-
nificantly disturb the flow.

B. Acquisition system

Due to its softness, the measurement surface does not
redistribute the pressure, and the three-layers sandwich

sensor array behaves as 25 independent piezocapacitive ele-
ments. Their capacitance C (varying typically between 3 and
10 pF) is directly correlated to local pressure. Each sensor
capacitance C is recorded as a function of time by an acquisi-
tion system, schematized in Fig. 1(c). It consists of two
instruments: a multiplexer (Keysight 34980A Agilent tech-
nologies) and a precision LCR meter (Keysight E4980AL
Agilent technologies), both controlled using an in-house
Matlab code. The LCR meter imposes a sinusoidal signal at
low frequency (1 kHz) and low voltage (1 V) and measures
the capacitance of the connected circuit with a precision of
0.05%. Its internal impedance is automatically adjusted to
the circuit: here, it is set to 5 kΩ. The multiplexer consists of
25 optical switches (one per sensor), with response time of
0.2 ms. During a measurement, the following steps are
repeated: first, the switch corresponding to one bottom elec-
trode is closed, and the LCR meter records the capacitance
of the circuit between this electrode and the top electrode,
averaged over 50 ms. The switch is then closed. This protocol
is repeated for every sensor of the array—which takes
approximately 1.5 s for all 25 sensors—before the next mea-
surement cycle starts. In the following analysis of the data,
an internal compensation calculation is done to account for
the impedance of the multiplexer and wires. In most experi-
ments, we use between 5 and 10 sensors, which automati-
cally increases the measurement frequency, up to 2–3 cycles
per second.

For higher frequency measurements, we use an electronic
circuit custom made by Piwio, which miniaturizes the acqui-
sition system. The circuit is similar in principle to the one
described above, with three main differences. First, square
waves of 1 V amplitude are used, with a frequency of 1 kHz.
Second, there is one multiplexer for every four sensors,
which increases the measurement frequency. Finally, the
capacitance is measured with a low resolution of 0.1 pF, and
it is not averaged. This system is much faster than the previ-
ous one (up to 200 Hz) but less accurate. In supplementary
material, Fig. 2 [33], the typical response of the sensors
when connected to the two acquisition systems is compared.
When using the precision LCR meter, the noise (of the order
of 1.5 Pa) is higher than the resolution of the acquisition
system (0.000 01 pF, which corresponds to a pressure of
10�3 Pa). With this measurement method, pressures as low as
2 Pa can be measured, as further confirmed in Fig. 3(c). The
Piwio integrated board, on the other hand, is limited by its
resolution and cannot measure pressures below 10 Pa. These
values of 2 and 10 Pa, which set experimentally the pressure
detection threshold of our sensors, are close to the 4 Pa
threshold of our rheometer (Discovery HR-2, TA instru-
ments). However, since the surface of the sensors is 65 times
smaller than the surface of rheometer geometry, the sensor
array is sensitive to forces typically 50 times smaller than the
rheometer. It should finally be noted that very low capacities
(between 3 and 10 pF) are measured here, so that a non-
negligible part of the noise in the measurements comes from
stray fields in the lab environment. To limit their impact, we
used in all experiments a nonconductive geometry (in
PMMA), and we were careful to limit the length of the
wiring.
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C. Sensor calibration

The sensors are calibrated using hydrostatic pressure in
compression and using a well-known flow in extension. In
compression, a cylinder (with a diameter of 6 cm) is placed
on the top of the measurement surface and made water-tight
with grease. Water is then added, and the capacitance Ci

of each sensor is measured as a function of water pressure
P ¼ ρgh (with h being the liquid height, ρ being water
density, and g being gravity). A calibration curve is presented
in Fig. 1(d): the sensor capacitance C, initially equal to
C0 ¼ 5:5 pF, increases by 50% for a pressure variation ΔP
of 600 Pa. The sensitivity S ¼ ΔC=C0

ΔP is higher at low
pressures, with S ¼ 1:8 kPa�1 for P , 100 Pa. It remains
excellent at higher pressures, with S ¼ 0:7 kPa�1 for
200 Pa , P , 1000 Pa. While the sensors are particularly
sensitive to the applied pressure, they do not react to shear
stress. This is shown in Fig. 1(e), where the sensors’ capaci-
tance is recorded when shearing silicone oil with viscosity
100 000 cSt. At the stresses σ considered here, silicone oil is
a Newtonian fluid, with constant viscosity and no measurable
normal stress (see supplementary material, Fig. 3 [33]). The
response of three sensors, placed either at the center of the
geometry (blue dots) or at an equal distance r ¼ 12 mm to
the center (red and yellow dots), is shown. While the applied
shear stress σ is varied over 5 orders of magnitude, the
sensors’ capacitance remains constant. Finally, the sensors
are calibrated in extension using a Newtonian fluid sheared at
high velocity. Indeed, in parallel plate geometry, a recircula-
tion appears, which generates a negative pressure close to the
static plate, varying quadratically with the angular velocity Ω
of the rotating plate (see Sec. IV for more details). We use
this theoretical pressure value as a reference to calibrate our
sensors.

Two other properties of the sensor are also considered.
First, we estimated the sensor response time by applying a
constant pressure load (,1000 Pa) on the sensors and remov-
ing it suddenly. The sensors’ response time is limited by the
dynamical response of the membrane, which deforms under
the applied stress. It is of the order of 50 ms when increasing
pressures are applied, but it can reach 100–200 ms when
a high pressure (typically 1000 Pa) is suddenly lifted.
Experimentally, we observed an increasing hysteresis when
applying pressures P . 3000 Pa, which might correspond to
a too large deformation of the measurement surface in the
grid. For this reason, we will focus here on pressures
between 0 and 1000 Pa, which correspond to the optimal
operating mode of our sensors. In the experiments considered
here, the measurement frequency varies between 1 and
20 Hz, so that the pressure is always averaged over a duration
that is of the order or larger than the sensor response time.
We finally checked that the sensors do not exhibit any signif-
icant drift in time. This is demonstrated in supplementary
material, Fig. 4(a) [33]: the response of the sensors, submit-
ted to a constant hydrostatic pressure of 300 Pa, is shown to
remain constant. In addition, we compare in supplementary
material, Fig. 4(b) [33] the sensors’ response before and after
a 2000 s experiment, after being subjected to pressures
varying between 100 and 400 Pa. The difference in the

pressure measured at zero angular velocity before and after
2000 s is smaller than 4 Pa, which is of the order of the accu-
racy of the sensors. The potential drift is thus extremely
small compared to what is reported in the literature [10,14],
which can reach 15–30 Pa in 60 s [10].

D. Rheology procedure

We use a parallel plate geometry, with the measurement
surface of the sensor as a static bottom plate. The rotating
disk is made of PMMA (to limit the effet of stray magnetic
fields on the sensors) and sanded, with a radius of R ¼ 2 cm.
This geometry was selected in all experiments so that the gap
h ¼ 1 mm is always much larger than the intrinsic variations
in the thickness of the measurement surface or its variations
due to compression with the normal stresses (which are both
of the order of 20 μm). This geometry, thus, limits the influ-
ence of the measurement surface on the flow: as presented in
supplementary material, Fig. 1 [33], the flows in parallel
plate geometry with and without the sensor are almost identi-
cal. The liquid of study is added directly on the measurement
surface. After positioning the upper disk at the working gap
(h ¼ 1 mm), the liquid in excess is carefully cleaned, so that
the meniscus at the edge of the plate is as vertical as possible.
Since the PDMS covering the measurement surface is
smooth and hydrophobic, the contact angle of the fluids used
here (water-based solutions, glycerol) is of the order of 90�,
as schematized in Fig. 2(c), and the meniscus is slightly
concave. This does not affect the rheological measurements
(as seen in supplementary material, Fig. 1 [33]), but it facili-
tates liquid ejection, which is observed at a lower angular
velocity than on the rheometer plate (a rough and hydrophilic
solid).

Once the liquid and the geometry are positioned, both the
internal force sensor of the rheometer and the sensor array
are set to 0. This consists in assuming that the system is pre-
stressed by a constant pressure Pc (typically of the order of
50 Pa) due to the meniscus, that is subtracted in the following
measurements. This assumption is valid as long as edge
effects due to the distortion of the meniscus or instabilities
such as edge fracture remain small enough to be neglected.
The numerical simulations of situations where instabilities of
the meniscus occur are complex. However, there seems to be
both theoretical and experimental consensus on edge fracture
[18,19,34]. The latter is expected to appear in fluids with a
negative second normal stress N2, when jN2 exceeds a critical
value Nc ≃ 5γ=h, with γ being the surface tension of the
fluid and h being the gap size. In our experiments with a
polymer solution of HPAM, N2 never exceeds 16 Pa, which
is much smaller than Nc ≃ 350 Pa. This value is also very
large for the particle suspension system, where, in addition,
we do not expect edge effects to directly impact our results,
focused on the detection of flow heterogeneities. In other sit-
uations, such as instabilities induced by inertia (at thus at
large shear rates _γ . 200 s�1), we checked that, in all experi-
ments, the potential pressure variation induced by the
increased meniscus deformation at the edge (of the order of
20 Pa) always remains small compared with the mean pres-
sure in the flow.
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During an experiment, a constant shear stress σ ¼ σ12 is
imposed on the fluid by the upper disk (with radius
R ¼ 2 cm), where 1 and 2 are the directions of the velocity
and the velocity gradient. The average normal stress is
obtained with the built-in force sensor of the rheometer,
which measures the mean vertical thrust on the geometry.
The sensor array, on the other hand, measures the pressure
P(r, θ) ¼ �σ22 close to each sensor, with σ22(r, θ) being the
component of the stress deviator tensor (in the 22 ¼ zz direc-
tion) in the position (r, θ, z ¼ 0). In parallel plate geometry,
we denote _γR as the shear rate at the edge and _γ as the local
shear rate under the plate, with _γ ¼ rΩ

h . For shear rates
_γR , 200 s�1, the velocity v of the fluid is (almost) purely
orthoradial, with v ≃ vθ eθ ¼ r Ωz

h eθ and vr, vz � RΩ.
For a homogeneous liquid, the equation of motion along

the r direction writes

1
r

@

@r
(rσ33)� σ11

r
¼ �ρ

v2θ
r
þ @p

@r
, (1)

where 3 denotes the vorticity direction. Equation (1) can
describe two types of flows that will be characterized sepa-
rately in Secs. III and IV. First, we consider the flow of a
non-newtonian fluid. For _γ , 500 s�1, the inertial effects
[appearing in the term @p

@r in Eq. (1)] are negligible compared
with the effect of the normal stresses, and this term is
neglected. The diagonal components in the stress tensor σ
generate a radial variation of �σ22, which is measured by the
sensors. In Sec. IV, a Newtonian fluid is sheared at high
angular velocities. In this configuration, the fluid does not
develop normal stresses and the left-hand side of Eq. (1) is

negligible. The inertial term @p
@r generates a slow recirculation

of the liquid, and a negative pressure profile is measured.

III. POSITIVE NORMAL STRESS MEASUREMENTS

Long-chain polymer solutions are viscoelastic fluids, in
which flow is characterized by three functions: their viscosity
η ¼ σ= _γ, the first normal stress difference N1 ¼ σ11 � σ22,
and the second normal stress difference N2 ¼ σ22 � σ33. In
polymer melts and concentrated polymer solutions, N1 is typ-
ically positive and high, while N2 is more than 10 times
smaller and negative [1].

Using the pressure sensor array, both N1 and N2 are mea-
sured in a single experiment. We use a solution of a partially
hydrolyzed polyacrylamid polymer (HPAM) with a high
molar mass Mw ¼ 18� 106 g/mol. HPAM is a charged
linear polymer consisting of acrylamid monomers, where 25–
30% of the amine group are replaced by a carboxyl group.
The concentration of HPAM in water is varied from 200 ppm
(very diluted) to 5000 ppm (very concentrated). As shown in
Fig. 2(a), the rheology of these solutions is characteristic of a
viscoelastic fluid, with a strong shear thinning: the viscosity
η decreases with _γR following a power law η/ j _γRjn. n
increases in magnitude with the concentration: in Fig. 2(a),
the best fit (dotted lines) is obtained for n ¼ �0:84 for
5000 ppm, n ¼ �0:70 for 1000 ppm, and n ¼ �0:65 for
200 ppm. At high shear rates, the liquid develops normal
stresses, in which the average value is measured by the
build-in force sensor of the rheometer, and is presented in
Fig. 2(b). The thrust Fz=πR2 averaged on the plate surface is
plotted as a function of _γR for three HPAM solutions. The
concentrated solutions exhibit high normal stresses: for

FIG. 2. Rheological measurements of HPAM solutions. (a) Viscosity η as a function of shear rate _γ for three different concentrations of HPAM solutions:
5000 ppm, 1000 ppm, and 200 ppm. (b) Average vertical pressure Fz=πR2 measured through the built-in sensor of the rheometer, as a function of _γR ¼ RΩ=h.
(c) (Top) Side view of an experiment. The pressure profile P(r) is measured as a function of radial distance r to the center of the geometry. (Bottom) Top view
of the sensor array. The sensors used in the experiment are shown with darker (or colored) shades. (d) Response of the sensors during a typical experiment of
stress-imposed steps σ(t). The pressure P ¼ �σzz measured by five different sensors is plotted as a function of time t.
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example, the mean normal stress of the 5000 ppm solution is
more than ten times higher than the shear stress σ at high
shear. In the region where they are present, the normal
stresses increase proportionally to _γmR . From Fig. 2(b), we
find m ¼ 0:41 for the 200 ppm solution, m ¼ 0:85 for the
1000 ppm solution, and m ¼ 0:92 for 5000 ppm. m is here
always smaller than 2 and increases with the concentration, a
phenomenon that has already been observed in similar
solutions.

The sensors measure pressure P ¼ �σ22 as a function of
radial distance r to the center of the geometry, as defined in
Fig. 2(c) (top). For simplicity, we present here the pressure
measurement of only five different sensors placed at varying
distances r to the center of the geometry and distributed in
all directions. Indeed, as presented in supplementary mate-
rial, Fig. 5 [33], two sensors placed at an identical distance r
to the center of the geometry measure the same pressure. In
Fig. 2(c), the sensors are placed at a distance r = 3.2 mm,
r = 6.6 mm, r = 11.0 mm, r = 14.9 mm, and r = 16.0 mm to
the center of the geometry. The geometry is shown with a
light circle: its center (indicated by a black dot) is placed at
the level of the upper right corner of the central sensor.

A typical experiment is presented in Fig. 2(d), with a
5000 ppm HPAM solution. The shear stress σ (plotted on
top) is increased by regular steps of 300 s, from σ ¼ 0 Pa to
σ = 20 Pa. The stress P ¼ �σ22 measured by each sensor is
recorded as a function of time t and is presented in Fig. 2(d)
with the same color code as in Fig. 2(c). As visible in
Fig. 2(d), P increases with σ. At each stress-imposed step,
the higher pressures are measured close to the center of the
geometry (in blue): the pressure continuously decreases with
r. While it remains almost constant for σ � 15 Pa (with a
very slight decrease in time), the pressure signal becomes
noisy for σ . 15 Pa. We interpret this as a consequence of
an elastic turbulence phenomenon, which is likely to occur at
low Reynolds numbers in our systems [35–37]. Such instabil-
ities are driven by the stretching of the polymer chains in the
azimuthal direction. Following Pakdel and Mc Kinley
[38,39], we expect these instabilities to appear in parallel
plate geometry when the criterion h=Rð Þ1=2N1=σ . M is
met, with R being the streamline curvature and M being a
constant, ranging between 1 and 6 depending on the rheolog-
ical law of the fluid [40,41]. Anticipating that jN2j � N1, we
calculate the Weissenberg number at the transition as
Wi ¼ N1=σ ≃ Fz=(πR2σ) ≃ 10, which leads to M ≃ 3. This
value is in good agreement with what is expected for elastic
turbulence [37].

From Fig. 2(d), the pressure P(r) measured at increasing
distances r within the sheared polymer solution is extracted
and is plotted for each shear stress σ. The results are pre-
sented in Figs. 3(a)–3(c), where P(r, σ) is plotted for varying
polymer concentrations [5000 ppm in Fig. 2(a), 1000 ppm in
Fig. 2(b), and 200 ppm in Fig. 2(c)]. The error bars corre-
spond to the error due to the sensor itself (which is done by
comparing the pressures of two sensors placed at an equal
distance to the center) and from the noise in the pressure
measurements. For all polymer concentrations, the pressure P
is positive and decreases with the distance r=R to the center
of geometry. This is similar to previous observations of

Alcoutlabi et al. [7] in solutions of a different polymer. The
pressure profiles P(r) all seem to extrapolate to a positive
pressure for r ¼ R, which is consistent with a negative value
for N2 [1,7]. It should also be noted that the pressures
detected here are significantly smaller than the ones mea-
sured in other polymer solutions [7]. In particular, minute
pressures (smaller than 10 Pa) that develop in very diluted
solutions [Fig. 2(c)] are detected, which opens the way to a
better characterization of these much less studied systems.

The experiments are compared with the pressure profile
P(r) expected from the theory. Since the sensors are set to
zero at the beginning of every experiment, the pressure dif-
ference due to the meniscus is already taken into account, so
that the pressure measured by the sensors is equal to �σ22.
The effect of centrifugal forces is very small here compared
with the normal stresses, so that the inertial term @p=@r in
Eq. (1) is neglected. Finally, using N1 ¼ σ11 � σ22 and
N2 ¼ σ22 � σ33, the equation of motion within the fluid [Eq.
(1)] is expressed as a function of σ22 and the two normal
stresses only [14],

@σ22

@r
¼ @N2

@r
þ (N1 þ N2)

r
: (2)

We assume here that in the HPAM solutions, as in many
polymer solutions, the two normal stresses are proportional
to _γm [3,4,7,25]. This comes to assume that N1 and N2 can
be written as N1 ¼ α1 _γ

m and N2 ¼ α2 _γ
m, with α1 and α2

being the normal stress coefficients. In other systems, this
hypothesis might not hold: in this case, it is also possible to
use our sensors slightly differently to measure N1 and N2, as
detailed in the supplementary material [33].

Using the expressions of N1 and N2 as a function of _γ and
_γR ¼ RΩ=h, Eq. (2) writes

@σ22

@r=R
¼ _γmR α1 þ (mþ 1)α2ð Þ r

R

� �m�1
: (3)

This equation is integrated with respect to r. The boun-
dary condition is found assuming that at the meniscus at the
edge of the geometry (in r ¼ R) the third normal stress
is equal to the capillary pressure, which writes
σ33(r ¼ R) ¼ �N2(R)þ σ22(R) ¼ Pc, with Pc being the cap-
illary pressure [14]. Since all sensors are set to zero at the
beginning of the experiment (at zero angular velocity), this
preload is already taken into account and Pc ¼ 0. This gives

P(r) ¼ �σ22(r)

¼ � _γmR
α1 þ (mþ 1)α2

m

r

R

� �m
� (α1 þ α2)

m

� �
: (4)

The pressure profile P(r) thus varies linearly with (r=R)m.
This formula is used to determine the two normal stress coef-
ficients α1 and α2. To do so, we combine all experiments for
a given polymer solution and plot P= _γmR as a function of
(r=R)m. This is shown in Figs. 3(a)–3(c) for HPAM concen-
trations of 5000, 1000, and 200 ppm. The different location
of the data on the r=R scale comes from the different
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positions of the sensors. In Fig. 3(a), the rotation axis corre-
sponds to one corner of the middle sensor [as schematized in
Fig. 2(c)], while in the two other cases, the sensor is cen-
tered. m is deduced from the best fit of the mean vertical
stress Fz=πR2 ¼ N1 � N2 as a function of _γ [Fig. 2(b)]. The
slope of the linear plot P= _γmR ¼ f ((r=R)m) gives � α1þ(mþ1)α2

m ,
and the intercept at the origin is α1þα2

m , from which α1 and α2

are calculated. The error on α1 is typically of the order of
25%, while for α2 (which is one order of magnitude smaller
than α1) it is of the order of 100%. The corresponding pres-
sure profiles (with a unique α1 and α2 per concentration) are
plotted in Figs. 3(a)–3(c), with α1 ¼ 4:7 and α2 ¼ �0:2
for c ¼ 5000 ppm, α1 ¼ 0:46 and α2 ¼ �0:02 for
c ¼ 1000 ppm, and α1 ¼ 4� 10�4 and α2 ¼ �3� 10�5 for
c ¼ 200 ppm. As expected for viscoelastic liquids, α1 is posi-
tive and α2 is negative, with jα1j � jα2j. Typically, α1

decreases by a factor 10 between the 5000 and the 1000 ppm
solutions, and decreases by a factor 1000 when comparing
the 1000 ppm with the 200 ppm solutions. Remarkably, we
can still measure the normal stress coefficients in the
extremely dilute (200 ppm) polymer solution, for which the
maximum mean normal stress is smaller than 10 Pa at high
shear. To finally check the validity and precision of the
sensors, the experimental pressure profiles are integrated to
obtain the mean pressure Psensors over the surface of the

geometry. In Fig. 3(d), Psensors is compared to the pressure
obtained through the built-in sensor of the rheometer
Prheometer. The error bars correspond to the pressure detection
threshold (taken at 2 Pa for the sensor array and 4 Pa for the
rheometer, see supplementary material, Fig. 2 [33]). All the
data collapse on a line with slope 1 (indicated with a dotted
line), which confirms that the pressure measured by the
sensors is fully consistent with the pressure given by the rhe-
ometer instruments.

IV. NEGATIVE PRESSURES’ MEASUREMENT

The sensors are also sensitive to negative pressures, which
can be measured after a calibration in extension. To obtain
controlled negative pressures, we use the same method than
Adams [2], or, more recently, by Dbouk [14]. We take advan-
tage of the fact that the flow in a parallel plate geometry is not
purely viscosimetric. Even at small Reynolds numbers, there is
always small recirculation because of inertia [14,42–44] [this
appears in the term @p

@r in Eq. (1)]. This secondary flow consists
of an inward motion, close to the plate, and an outward
motion, near the rotating disk that pulls the plate and the rotat-
ing disk together. The effect of recirculation on the rheology
curves is presented in Fig. 4(a) for a Newtonian fluid (a
mixture of 98% glycerol with water), with density ρ ¼

FIG. 3. Pressure profiles P(r) within flowing HPAM solutions in plate/plate configurations, for varying shear stresses σ. The dotted lines are the best fit of the
model, with P(r) ¼ � _γR

m[(α1 þ (mþ 1)α2=m(r=R)
m)� (α1 þ α2=m)]. (a) Solution of 5000 ppm HPAM in water: α1 ¼ 4:7, α2 ¼ �0:2. (b) HPAM 1000 ppm:

α1 ¼ 0:46, α2 ¼ �0:02. (c) HPAM 200 ppm: α1 ¼ 4� 10�4, α2 ¼ �3� 10�5. (d) Comparison of the integrated pressure from the sensor array Psensors to the
mean pressure given by the built-in force sensor of the rheometer Prheometer. The dotted line has a slope equal to 1.
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1250 kg=m3 and viscosity η ¼ 0:74 Pa s at 22 �C. Usually, at
low angular velocities, this secondary flow does not disturb
the viscosity measurements. It simply induces a positive total
normal stress on the plate, which corresponds to negative pres-
sure P. However, depending on the value of the Laplace pres-
sure in the meniscus, it may be at the origin of liquid ejection.
This phenomenon is observed in our experiment at high shear
rates _γ . 200 s�1: the ejection of a small amount of liquid
comes with a decrease in the viscosity, which differs from the
constant value expected for a purely Newtonian fluid (dotted
line). Note that if the liquid were wetting, the ejection would
occur at higher shear rate. In this situation, the recirculation
might induce an increase in the viscous loss and the measure-
ment of an effective viscosity increasing with the shear rate
[44]. This ejection, however, does not modify the normal pres-
sure on our small sensors, since they are at least 3 mm away
from the meniscus.

What is of interest for us here is that recirculation gener-
ates negative pressure P in the fluid, in which absolute ampli-
tude increases with Ω. This pressure is large enough to be
detected by the sensor of the rheometer, as visible in blue in
Fig. 4(a). The pressure profile generated by recirculation is
found to vary quadratically with both the angular velocity Ω
and the distance r to the center of geometry. Following
[42–44], the exact expression of P is

P(r) ¼ � 3
20

ρΩ2(R2 � r2), (5)

so that the mean theoretical pressure (averaged over the
surface S ¼ πR2 of the geometry) writes PΩ ¼ �3=40ρR2Ω2.

This prediction is shown in Fig. 4(a) with a blue dotted
line and compared with the experiment (blue triangles).
The model reproduces well the decrease in PΩ for
_γ . 200 s�1. This indicates that the effect of inertia on
the meniscus and the potential fluid loss (visible in the
viscosity measurement) remains of second order compared
with the effect of recirculation on the pressure measure-
ments. The parabolic shape of PΩ is even more clearly
visible when plotted in a linear scale, as presented in
Fig. 4(b). In this experiment, the angular velocity Ω is
varied between �60 and 60 rad/s: in this range of velocities,
the experiment and model nicely overlap.

In the following, we use this negative pressure profile to
calibrate the sensors in extension and to test them in a configu-
ration where P , 0. As presented in the inset of Fig. 5(a),
the sensor array is here centered with respect to geometry. The
pressure P is measured at four different distances r from the
center of geometry. The sensors are calibrated by measuring
their capacitance at two extreme angular velocities: Ω ¼ 0 and
Ω ¼ 60 rad/s, and the corresponding pressure is deduced from
Eq. (5). A linear interpolation between these two extreme
points is sufficient here to calibrate the sensors. As presented
in Fig. 5(a), the sensor capacitance C varies almost linearly
with P in the region of negative pressures considered
(�300 Pa , P , 0 Pa). The dotted line shows the linear inter-
polation between the extrema (blue points): it fits convincingly
all intermediate measurements (black circles).

FIG. 4. (a) Viscosity η and mean normal stress (measured by the force
sensor of the rheometer) of a 98% glycerol solution in water as a function of
_γ. A value of _γ ¼ 200 s�1 corresponds to an angular velocity Ω ¼ 10 rad/s
in this geometry. (b) Mean normal pressure PΩ measured through the force
sensor of the rheometer, as a function of rotor angular velocity Ω. The dotted
lines are the parabolic fits expected from the theory.

FIG. 5. (a) Calibration curve of a sensor, with (in dotted line) a linear fit.
(b) Radial distribution of the pressure in a parallel plate torsional flow, for
varying angular velocities Ω.
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After calibration, we test the validity of our sensors to
measure negative pressures. To do so, we compare the pres-
sure profiles P(r) measured experimentally to the theory for
varying angular velocities Ω (4 rad/s , Ω , 50 rad/s). In
Fig. 5(b), the experimental results are shown in circles, with
a different color for each Ω. The error bars show the differ-
ence in pressure measured by different sensors placed at an
equal distance r from the center. The pressure profiles P(r)
are quadratic, as expected from Eq. (5). The theoretical
profile is presented with a dotted line: it compares well with
the experimental measurements. This demonstrates that the
sensor arrays also detect negative pressures with a reasonable
accuracy. In the following, the pressure measurement in an
inertial Newtonian fluid flow will be used as a reference flow
to calibrate the sensors for negative pressures.

V. EVIDENCING HETEROGENEITIES

Interestingly, the small size of the sensors when compared
with the size of the geometry, combined with a high mea-
surement frequency, makes them a very good tool to study
heterogeneous flows. We consider here a suspension of
non-Brownian solid particles (of cornstarch) in a neutrally
buoyant Newtonian liquid. At high solid fractions f, these
suspensions exhibit a striking shear-thickening behavior:
while they flow easily at low stirring, they become highly
viscous at high stirring with an almost solidlike behavior. It
is now admitted that this shear-thickening phenomenon

associated with an evolution from a lubricated interaction
between the particles (at low shear) and a frictional contact (at
high shear) due to an increase in normal stresses that push par-
ticles together [45–50]. Interestingly, close to the shear-
thickening transition, large temporal fluctuations in viscosity,
shear rate, or density are often observed in shear thickening
fluids, including cornstarch [51–53]. Recent experiments and
new measurement methods (magnetic resonance [54], ultra-
sound imaging [55], x-ray radiography [21], or boundary
stress microscopy [56]) seem to indicate that these fluctuations
are associated with a heterogeneous flow. This observation is
further confirmed by recent simulations [57], but a lot remain
to be understood, still, on the nature of the heterogeneities and
their origin. Even if they seem to be consistently observed in
some shear thickening systems, it is also not clear whether all
shear thickening fluids become heterogeneous.

We use here a suspension of solid cornstarch particles, a
popular shear-thickening system [20,55]. The solid particles
are put in an isodensity salt of CsCl in water (55% w/w of
CsCl). Here, we use a suspension of 41% in the weight of
cornstarch, as done in Refs. [21,55] so that the fluid is in the
discontinuous shear-thickening region. In Fig. 6(a), the vis-
cosity of the 41% in weight cornstarch suspension is mea-
sured as a function of _γ for stress steps of 60 s. At this
weight fraction of 41%, cornstarch is shear-thinning at low
shear rate ( _γ , 2 s�1) and strongly shear thickening above a
critical shear rate _γc ¼ 5 s�1, with a viscosity η increasing by
more than one order of magnitude. In Fig. 6(b), we report the

FIG. 6. Suspension of 41% of cornstarch particles in an isodensity water/CsCl solution. (a) Viscosity η as a function of shear stress _γ. (b) Normal stress P mea-
sured by the axis of the rheometer as a function of _γ. (c)–(f ) Normal stress measurement of the sensors as a function of time, for varying imposed constant
stresses σ. Two 4� 4mm2 sensors [shown in the inset of (c)] are placed in opposite directions on a diagonal. (c) σ ¼ 5 Pa. (d) σ ¼ 20 Pa. (e) σ ¼ 100 Pa. (f )
σ ¼ 150 Pa.
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mean normal stress generated by the flow as recorded by the
rheometer. Here again, two regions can be distinguished: at
low shear rates, normal stresses are small and negative and
decrease slowly with _γ. For a shear rate _γ . 15 s�1,
however, normal stresses become positive and increase
rapidly with _γ. The error bars indicate the amplitude of pres-
sure fluctuations, which increase dramatically in the shear-
thickening region.

To the best of our knowledge, the sensor arrays presented
in this work (accounting for normal stresses associated with
fluctuations) have not been presented in the literature so far.
We use here two sensors, placed at opposite directions below
the rotating plate, at an identical distance r ¼ 12 mm from
the center [see the inset of Fig. 6(c)]. They record the pres-
sure at a high frequency of 100 Hz. To study the dynamical
behavior of the suspension, we impose steps of constant
shear stress σ of 300 s, either in the shear-thinning region
(σ ¼ 1 and 5 Pa) or in the shear-thickening region (σ ¼ 20,
100, and 150 Pa). These points are highlighted by circles in
Figs. 6(a) and 6(b). We observe that the measurements corre-
sponding to the 300 s steps coincide with the 60 s measure-
ments, contrary to what was observed in other shear
thickening suspensions [21]. We explain this by the combina-
tion of a limited particle migration in parallel-plate geometries
[58,59] and the relatively short time scale of the experiment.

In Figs. 6(c)–6(f), we report the pressures measured by the
two diagonal sensors [whose position is shown in the inset of
Fig. 6(c)] as a function of time for each step. The typical
response of the central sensor is also shown in supplementary
material, Fig. 6 [33]. For σ ¼ 5 Pa, below the discontinuous
shear-thickening region, the pressure is constant and identical
for both sensors [Fig. 6(c)]. It is slightly negative
(P ≃ �10+ 3 Pa, see zoom in the inset), in good agreement
with the global pressure measured by the rheometer. However,
just after the shear thickening region is reached, oscillations
become visible. The pressure variations are initially small, of
the order of 30 Pa for σ ¼ 20 Pa (see Fig. 6 and inset). They
increase in amplitude with increasing σ: the pressure variation
is of the order of 150 Pa for σ ¼ 100 Pa and 350 Pa for
σ ¼ 150 Pa. Very interestingly, the pressure fluctuations are
extremely regular, with out-of-phase peaks of similar ampli-
tude and a constant negative pressure in between. The period
T between two peaks slightly decreases with increasing shear
stress σ: T ¼ 15:1, 13.3, and 11.3 s, respectively for
σ ¼ 20, 100, and 150 Pa. Interestingly, T is very close to
twice the rotational period of the upper disk (respectively
equal to 13.8, 11.3, and 10.7 s). All these results seem to indi-
cate the presence of one large aggregate rotating with an
angular velocity ΩA ≃ Ω=2 within the parallel plate geometry.
The presence of this aggregate is associated with local and
very high normal stresses: for σ ¼ 150 Pa, the peak pressure
is 7 times higher than the mean pressure obtained through the
force sensor of the rheometer.

This observation is in good agreement with the recent
work of Ovarlez et al., which evidenced the presence of
“density waves” in a similar cornstarch suspension [21]. In a
Couette cell, the density waves move in the flow direction,
more slowly than the rotor, similarly to what is detected here.
Our results are also consistent with the observations of

Rathee et al. [56], who showed the presence of zones of high
shear stress propagating with an angular velocity ΩA ¼ Ω=2
in a suspension of submicronic silica particles in glycerol.
Here, for the first time, we evidence and measure the normal
stresses associated with these heterogeneities. The stresses
measured by the sensors are 5–10 times higher than the
average pressure obtained through the rheometer. The asym-
metric forces surely generate a large torque on the geometry
and are thus most likely at the origin of the off-axis motion
of the rotor in Couette cells. This phenomenon has been
observed so far in cornstarch [21] and in latex particle sus-
pensions [60]. It should be noted, finally, that even in a
simple parallel plate geometry, the amplitude of the peak
pressure remains undetected by the force sensor of the rhe-
ometer: the fluctuations are only visible when measured over
an area significantly smaller than the plate size to avoid a
compensation between the low and high pressure regions.

VI. CONCLUSION

In the study of Newtonian fluids or homogeneous flows,
conventional rheometers, which give access to the average
values of the shear stress and normal forces, are particularly
relevant. However, heterogeneous flows often occur in
complex fluids, as in cornstarch suspensions. The sensor
array that we present here is a new tool that brings a new
insight into these flows. Here, we access to σ22 ¼ �σzz, an
important parameter that is much less studied than the shear
components of the stress tensor. Our results evidence the
potential of the sensor array, not only to measure the normal
stresses N1 and N2 (as done with the HPAM solution) but to
evidence and follow heterogeneities (as in cornstarch suspen-
sions). It is, to our knowledge, the only sensor capable of
evidencing the normal stresses generated by rapidly moving
objects, with very high signal to noise and with a frequency
up to 200 Hz. In addition, and in contrast with other pressure
sensors, our system is highly versatile. The size, number, and
position of the sensors can be modified by replacing the
bottom electrode array, which is independent of the measure-
ment surface.

Further developments are also possible: The addition of a
soft bottom electrode would make the whole sensor array
bendable enough to be added to a Couette geometry. The
measurement of normal stresses has never been reported in
this very common geometry, despite a huge interest of the
community. It would very nicely complement the experi-
ments (of x-ray radiography or ultrasound imaging) that have
been previously made in such a geometry [21,55] with het-
erogeneous flows.
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