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We have investigated the depinning of the contact line on superhydrophobic surfaces with anisotropic

periodic textures. By direct observation of the contact line conformation, we show that the mobility is

mediated by kink defects. Full 3D simulations of the shape of the liquid surface near the solid confirm that

kinks account for the measured wetting properties. This behavior, which is similar to the Peierls-Nabarro

mechanism for dislocations, may open perspectives for the optimization of wetting hysteresis by design.
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In the quest for water repellent surfaces, the benefit of
surface textures has been emphasized for decades [1–5].
When a droplet is suspended on surface textures, the actual
area of contact between the liquid and the solid is reduced.
The ratio of the actual area of contact to the total area is the
solid fraction �< 1. It is tempting to assume a propor-
tional reduction of the work of adhesion of the liquid w;
this is the Cassie theory [6] which predicts the well-known
rule of mixture: w=��ð1þcos�Þ¼�ð1þcos�0Þ where �
is the contact angle on the textured surface, �0 the contact
angle on the flat surface and � the surface energy of the
liquid. This thermodynamic approach, which emulates the
standard derivation of the Young equation [7], simply
proceeds by areal averaging of the surface energies.

One obvious limitation of the Cassie theory is that it
predicts only one contact angle. However, the contact angle
for a wetting liquid (advancing) is usually quite different
from the contact angle for dewetting (receding). Contrasted
advancing and receding contact angles result in a sticky
surface, which defeats the claim towater repellency. Strong
emphasis has recently been laid on this contact angle
hysteresis, and the failure of the Cassie equation in this
respect has been highlighted [8]. Indeed the Cassie theory
assumes that the contact line statistically explores all con-
figurations on the heterogeneous surface. However at the
scale of the texture, the deformation energy of the liquid
surface is considerably larger than the thermal energy [7].
Large heterogeneities induce pinning, instabilities, and
hysteresis. This is a generic behavior, which is found not
only in wetting [9], but also in many other systems ranging
from fracture [10] to spin density waves [11].

Several methods have been developed to circumvent this
shortcoming of the Cassie theory. Thresholds for line
instabilities can be approximated by averaging over the
perimeter of the contact line [12–14]. One of the most
successful methods is the differential area theory proposed
by Choi et al. [13] where energy extrema are estimated for
specific configurations of the contact line. They indeed
correctly predict the scaling of the receding contact angle
with the lattice parameter for square arrays.

However there remains some conceptual difficulties:
energy averages over the contact line depend on the con-
figuration of the line at instability, and this configuration is
not predicted by the theory. As a result, most often, for
periodic surfaces, we consider a macroscopically straight
segment of the (locally wavy) contact line [Fig. 1(a)].
Assuming such a straight contact line, the differential
area theory predicts that the receding contact angles should
be different along inequivalent rows. However, Dorrer and
Rühe [15] have measured the wetting properties of aniso-
tropic surfaces: they found very limited anisotropy for the
receding contact angle. On surfaces textured with stripes,
which are even more anisotropic, Choi et al. [13] also
evidenced isotropic receding contact angles. To explain
this result, they implicitly discard the straight line assump-
tion: they show that the local motion of the contact line
takes place along the stripes, even when the line macro-
scopically moves in the normal direction. This case high-
lights the limitation of the differential area method: for
stripes the relevant conformation is relatively easy to
guess, but for less symmetric surfaces, the theory does
not provide the line conformation at instability and effi-
cient prediction of contact angles is still elusive.
In the present experiments we have generalized the

stripe geometry proposed by Choi et al. [13] following

FIG. 1. Schematics of a contact line receding: (a) as a straight
segment on a rectangular array and (b) as a kink. The sequence
of lines 1,2, and 3 suggests the kinematics of depinning for each
configuration.
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Dorrer and Rühe [15]. We have systematically character-
ized the motion of the contact line on rectangular post
arrays (Fig. 1) as a function of lattice parameters: we
have measured receding contact angles for lines propagat-
ing in the x and y directions and we have monitored the
propagation mechanism through direct observations. The
results demonstrate that the kinematics is determined
by the motion of kinks in the contact line [Fig. 1(b)], in
contrast to the straight line assumption. Numerical simu-
lations confirm the impact of the kinks on contact line
dynamics and quantitatively support our conclusion.

Hybrid silica layers were spin-coated on glass substrates
using a sol-gel process, and the surface textures were
imprinted with elastomeric stamps as described previ-
ously [16]. The surfaces exhibit rectangular post arrays
with constant post size (diameter 12:5 �m� 1:0, height
11 �m). The lattice parameter Lx was kept constant
at 20 �m while Ly was varied between 20 and 70 �m

(Fig. 1). The wetting properties of the hybrid silica
material were characterized: for the flat surface advancing
and receding contact angles are, respectively, �0;adv ¼
119� 3� and �0;rec ¼ 89� 3�.

The contact angle measurements were carried out with a
DSA100 goniometer (Krüss, Germany) in dynamic mode
(drop volume oscillating between 6 and 12 �l) and the
data processed with the ImageJ plugin. The surface was
rotated by 90� to measure both x and y directions. We find
that the receding contact angles (Fig. 2) decrease with
the solid fraction. The dependence with the lattice parame-
ter Ly is very similar to the behavior previously observed

for square lattices [17], and quite different from the
Cassie predictions [13,16]. Our values are also fully con-
sistent with the findings of Dorrer and Rühe [15]: we
observe that wetting anisotropy is very limited for the full
range of lattice parameters explored. Even strongly aniso-
tropic surfaces result in nearly isotropic receding contact
angles.

To understand this behavior, we investigated the con-
formation of the contact line in detail during evaporation.
As with polymeric materials [18], the contact can easily be
monitored by optical microscopy through the transparent
substrate (Fig. 3, top; for a video see the Supplemental
Material [19]). A sequence of snapshots of the contact line
near the y edge of the contact area (Fig. 3, bottom) sum-
marizes our observations of the motion. Macroscopically
the contact line moves in the y direction. Microscopically
what is seen is the quicker, jerky motion along x of small
perpendicular contact line segments joining two dense
rows. This local motion at the post length scale is schema-
tized in Fig. 1(b). These features are similar to the ‘‘jogs’’
described by de Gennes [7] for stripes, and were very
clearly anticipated by Dorrer and Rühe [15]. We think
they can be more aptly called kinks in the context of arrays,
as further discussed below. The kinematics of the kinks is
especially visible when the front propagates in the y direc-
tion, due to the larger kink width, but we have found that
kinks account for contact line motion all around the drop,
and on all the surfaces investigated here.

FIG. 2 (color online). Measured receding contact angles for
various lattice parameters, plotted as normalized work of adhe-
sion as a function of the solid fraction. The two directions x and
y are shown. Contact angles calculated from full 3D simulations
of depinning are also shown, for w0 ¼ 1:45 (see text).

FIG. 3 (color online). Direct visualization of the motion of the
contact line on a rectangular array with Lx ¼ 20 �m and Ly ¼
50 �m: (a) full view of the contact area and (b) a sequence of
depinning events, showing the succession of kink motions. The
rectangular box in (a) marks the location of the sequence (b).
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As a next step we have simulated the depinning of the
contact line to evaluate the impact of kinks on (1) the
anisotropy of the wetting properties, and (2) the depen-
dence of the receding contact angle on the solid fraction.
Using the powerful minimization algorithm SURFACE

EVOLVER [20], we calculated a minimal surface obeying

the relevant boundary conditions. For the straight line we
simulated a periodic row. The unit cell consists of two
posts: the contact line sits on the first post, while the second
post is located further back. Only the front post turns out to
be active during depinning. For kinks we used a six-post
configuration (Fig. 4, inset) with two extensions at the
continuum level of description on the sides to avoid
spurious boundary condition effects. Once the geometry
of the textures (post diameter and lattice parameters) and
the work of adhesion of the liquid on the post surface
w0 ¼ �ð1þ cos�0;recÞ are specified, we can accurately

calculate the contact line conformation, or more exactly
the full shape of the liquid surface near the solid. A typical
result for a receding contact line is shown in Fig 4; note the
close similarity with the direct observations with scanning
electron microscopy [21]. For quantitative evaluation of
the wetting properties, we adjust the contact angle �wall of
the liquid on some arbitrary upper interface, parallel to the
solid and far above (typically 10 times the unit cell size)
[22] (Fig 4). Gradually increasing this contact angle
increases the loading on the contact line until dewetting
is initiated on the most sensitive post. The angle is
increased further until the contact line becomes unstable
and the post is fully dewetted: this event determines the
macroscopic receding contact angle �rec ¼ �� �wall of
the textured surfaces.

We have modeled a nominal surface with post diameter
10 �m and �0;rec ¼ 90� for a large range of lattice

parameters. The resulting receding contact angles are plot-
ted as a function of � in Fig. 5. For the straight line
simulations [Fig. 1(a)] we evidence strong anisotropy as

expected: if the line propagates in the y direction the result
is quite naturally independent of Ly. On the other hand, if

the line propagates in the x direction, the result depends
strongly on Ly and the work of adhesion 1þ cos�rec
decreases with � as observed. The differential area model
[13] is also shown, and we note an excellent agreement
with the straight line simulations.
Following the previous reasoning on stripes, we would

expect the receding contact angle for propagation along x
(the easier direction) to rule dewetting on these surface.
However, the simulations show that the receding contact
angle increases further—and the work of adhesion
decreases—when a kink is introduced in the line (Fig. 5).
For larger solid fractions, in the experimentally accessible
range, the threshold with a kink is about 2=3 lower than the
threshold for a straight line. In addition, we find that with a
kink, within numerical errors, the receding contact angle is
the same in the x and the y direction of propagation. These
results are completely consistent with our direct observa-
tions of the contact line which evidence that contact line
propagation proceeds through the motion of kinks, not
straight lines. Since the threshold is the same in both
directions, receding contact angles do not depend upon
the orientation of the contact line: surface anisotropy is
suppressed and the drop maintains a quasicircular shape
even on geometrically anisotropic surfaces.
To further substantiate these predictions experimentally,

we have fabricated two surfaces with identical local mor-
phology but different topology. The first surface is one of
our usual rectangular arrays, with Lx ¼ 30 �m, Ly ¼
40 �m and pillar diameter 14 �m. On this surface a
droplet develops a circular contact line with a distribution
of kinks similar to Fig. 3. The receding contact angles were
found to reach about 132�. More precisely the normalized
effective work of adhesion 1þ cosð�recÞ ¼ 0:32� 0:04 in
the x direction and 0:34� 0:03 in the y direction, consis-
tent with the data in Fig. 2. The other surface is textured

FIG. 4 (color online). Simulation of the depinning event for a
contact line with a kink. The equilibrium minimal surface is
shown just before depinning occurs. Inset: Top view of geometry
of the surface.

FIG. 5 (color online). Computed receding contact angles
plotted as effective work of adhesion vs the solid fraction, with
w0 ¼ 1:0. Computed values for the straight line are compared to
results of the differential area model and to computed values
with a kink.
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with circular loops of pillars [Fig. 6(a)]. The layout has
been designed so as to maintain a local geometry similar
to the rectangular array, with nearly identical spacings
between pillars. However, the topology of the circle can
match the drop shape: when a drop is deposited near the
center of the loop, it self-centers during evaporation. The
contact line anneals itself until a circular, kink-free contact
line is stabilized [Fig. 6(a)]. This contact line is pinned
[Fig. 6(b), left] and the contact angle decreases with further
evaporation, until at about 121.5� [and an effective nor-
malized work of adhesion 1þ cosð�recÞ ¼ 0:48� 0:01] an
instability rapidly develops all around the droplet which
pops in, into the next row [Fig. 6(b), right]. The contrast
between effective works of adhesion for the kink-free
contact line and the contact line with kinks lies quite close
to the 2=3 ratio predicted by the simulations.

In brief, kinks do control line motion on periodic super-
hydrophobic surfaces: they reduce the threshold for depin-
ning of the contact line and produce isotropic wetting
properties. If the kinks are suppressed, as with pillar loops,
straight line jumps are observed, with a larger depinning
threshold. Turning back to the experiments by Choi et al.
[13] on striped surfaces, and especially on spirals, we note
that the transverse contact line spanning two consecutive
rows (Fig. 5d in their paper)—de Gennes’ ‘‘jog’’ [7]—is
effectively a kink. It is no surprise that it is found to play a
central role for receding contact lines; indeed, for stripes,
at the continuum limit, the threshold is expected to be nil
[7], as observed experimentally [13].

However, we note that, starting from a reasonable value
�0;rec ¼ 90�, the receding contact angles we evaluate for a

contact line with a kink (Fig. 5) do not fall on the data
(Fig. 2). In fact, a good fit to the kinkmodel is only obtained
by increasing the work of adhesion of the liquid from 1 to
1.45, a value which is equivalent to an effective contact
angle �0;rec ¼ 63� on the flat surface (Fig. 2). We do not

have a definite explanation for this discrepancy, but it has
recently been demonstrated experimentally that contact
rupture between liquid and post is significantly affected
by dynamic effects [21]. In particular, the dynamics

controls the transition between pure dewetting and liquid
bridge rupture. Indeed in all the numerical cases studied
here, contact line depinning actually proceeds by dewetting
from the post surface. This process is characterized by a
complex dynamics, involving confinement both in the elon-
gated meniscus and at the contact line. This dissipation is
bound to effectively increase the work of adhesion.
To date, receding contact angles have been modeled

through the depinning of straight line segments only
[12,13,22]. However, our results demonstrate that it is the
depinning of the kinks in the line which controls the
dynamics. It is well known that suitable defects may lower
deformation thresholds: in the Peierls-Nabarro mechanism
[23,24], for instance, dislocations set the threshold for
plastic yielding in crystalline materials.
Similarly a wide variety of systems ranging from mag-

netic domain walls to DNA chains can be viewed as elastic
chains coupled to a periodic lattice. The dynamics of the
chains is controlled by the kinks which emerge from the
competition between periodic lattice interaction and elastic
coupling between segments: this is the Frenkel-Kontorova
model [25]. A contact line moving on a periodic array is
simply another type of elastic chain coupled to a lattice.
The interaction with the lattice is mediated by the liquid
meniscus adherent to the post (Fig. 4). It is affected by the
shape of the post and also, if the post is not circular, by its
orientation relative to the contact line. In the kink, the
conformation of the line itself is directed by the underlying
lattice so that altogether, the local geometry of the post
array is expected to affect the coupling of the chain to
the lattice. Historically the plastic deformation of crystal-
line materials has thoroughly been understood once the
preferential slip planes and directions for dislocations have
been rationalized in terms of lattice symmetries [26].
Likewise we can expect that with the kink concept, reced-
ing contact angles can be rationalized in terms of symme-
try of the post arrays.
In conclusion, we have evidenced that kinks in

receding contact lines are the relevant elementary mecha-
nism of motion on periodic superhydrophobic surfaces.
Simulations fully vindicate the role of the kinks in the
quasistatic motion of the contact line: they account for
both wetting isotropy and reduction of the depinning
threshold. Contact lines are yet another example of
Frenkel-Kontorova chains and based on the abundant lit-
erature [25] we expect that the kink concept can lead to a
rationalization of the dependence of receding contact
angles on underlying surface geometry. As a next step,
the dissipative processes should also be taken into account
including fluid viscosity both at the meniscus scale and at
smaller length scales near the contact line.
We thank M. Gorynsztejn-Leben for suggesting the

post loop experiment. We acknowledge support from the
National Research Agency (ANR, DYNALO Project
No. NT09_499845).

FIG. 6 (color online). (a) Pillar loop with a pinned contact line,
and (b) droplet just before [(b), left] and just after [(b), right]
instability. The contact angle at instability is lower than the
contact angle on the rectangular array because of the absence
of kinks.
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